DURLON[®] GASKET MATERIAL

Technical Handbook

Superior Manufacturing \cdot Quality Performance

GASKET RESOURCES INC.

DURLON[®] GASKETING TECHNICAL HANDBOOK

TABLE OF CONTENTS

Page

Compressed Sheet	. age
Styles	1 1
Physical & Mechanical Properties	2 2
PTFF Sheet	
Styles PxT Chart	3 3
Physical & Mechanical Properties	4 4
Corrugated Flexible Graphite	5
Physical & Mechanical Properties	5 5
Flexible Graphite Sheet	6
Physical & Mechanical Properties	6 6
Causes/Reducing Gasket Failure	7
Gasket Installation/Bolt Tightening Worksheet	8
Effect of Bolt Lubrication, Torque Values	9
Chemical Resistance Chart	10-11

DURLON[®] Products are manufactured to ISO 9001:2000 Quality Standards

Gasket Resources Inc.

P.O. Box 565 Exton, PA 19341-0565

Sales:

Toll Free: (866) 707-7300 PH: (610) 363-5800 FAX: (610) 363-5881

e-mail: sales@durlon.com

Technical:

(713) 856-9445

e-mail: tech@durlon.com

www.gasketresources.com

Style	Composition	Description
8300	Carbon/NBR	A premium grade compressed sheet, DURLON 8300 is excellent in steam and hydrocarbon services in the refining, petrochemical and power generation industries. Other applicatons include oil, water, mild alkalis, mild acids, and solvents. DURLON 8300 contains high strength carbon fibers bonded with nitrile (NBR) synthetic rubber.
8400	Phenolic/NBR	With an extremely wide pH application range, DURLON 8400 can be used in process piping and equipment in chemical, pulp and paper, and other general industrial applications. * US Patent No. 5098777
8500	Aramid-Inorganic/NBR	Our workhorse material, DURLON 8500 is excellent in steam, natural gas, soybean processing and with new generation refrigerants. A high quality general service gasket material for use in a wide range of services in pulp and paper, food, beverage, pharmaceutical, chemical, refinery, gas pipeline and general industry. FIRE TESTED: DURLON 8500 passed a modified API 607 fire test.
8600	Aramid-Inorganic/SBR	A high quality gasket material containing high strength aramid and inorganic fibers bonded with SBR rubber. An excellent choice for steam or services where a white gasket material is required.
8700	Aramid-Inorganic/CR	A high performance compressed gasket material for use in processes that require a neoprene (CR) bonded sheet. Excellent for steam, oils and refrigeration services.
7900/7950	Aramid/NBR	An economy grade general service compressed sheet with NBR rubber binder for mild service in piping and equipment and OEM applications in steam, hydrocarbons and refrigerants. An economical alternative when service ranges and applications are not severe.

Anti-Stick Properties: Much effort has gone into improving the anti-stick release agents of all compressed DURLON[®] products. All DURLON[®] compressed gasket materials have passed the MIL-G-24696B Navy Adhesion Test (366°F/48 hrs).

Typical Physical Properties

DURLON [®] Style	8300	8400	8500	8600	8700	7900/7950
Color:	Black	Gold	Green	White	Blue	7900 - Off-White 7950 - Blue
Fluid Services:	Saturated Steam, Oils, Dilute Acids & Alkalis, Solvents Hydrocarbons	Steam, Oils, Fuels, Solvents, Caustics, Refrigerants, Dilute Acids & Alkalis	Saturated Steam, Oils, Dilute Acids & Alkalis, Solvents, Fuels, Refrigerants	Saturated Steam, Water, Dilute Acids & Alkalis, Inert Gases, Ammonia	Saturated Steam, Oils, Water, Dilute Acids & Alkalis, Refrigerants	Steam, Water, Inert Gases, Oils, Fuels, Dilute Acids & Alkalis
Fiber System:	Carbon	Phenolic	Aramid/Inorganic	Aramid/Inorganic	Aramid/Inorganic	Aramid
Binder:	NBR	NBR	NBR	SBR	CR	NBR
Density, g/cc (lbs/cu. ft):	1.6 (100)	1.7 (106)	1.7 (106)	1.7 (106)	1.7 (106)	1.7 (106)
Temperature, Range: Continuous, max:	-100 to 800°F (-73 to 427°C) 600°F (315°C)	-100 to 800°F (-73 to 427°C) 554°F (290°C)	-100 to 700°F (-73 to 371°C) 548°F (287°C)	-100 to 700°F (-73 to 371°C) 548°F (287°C)	-100 to 700°F (-73 to 371°C) 548°F (287°C)	-100 to 700°F (-73 to 371°C) 400°F (204°C)
Pressure Max:	1500 psig (103 bar)	1500 psig (103 bar)	1500 psig (103 bar)	1500 psig (103 bar)	1500 psig (103 bar)	1000 psig (70 bar)
ASTM F36, Compressibility	8-16%	8-16%	8-16%	8-16%	8-16%	7-17%
ASTM F36, Recovery	50%	50%	50%	45%	45%	40%
ASTM F38, Creep Relaxation	18%	25%	20%	20%	20%	20%
ASTM F152, Tensile Strength across grain, psi (MPa)	1,800 (12.4)	1,800 (12.4)	2,000 (13.8)	1,800 (12.4)	1,500 (10.3)	1,600 (11.0)
Fluid Resistance,						
pH Range (room temperature)	3 to 11	2 to 13	3 to 11	3 to 11	3 to 11	3 to 11
ASTM F146 IRM 903 Oil 5h/300°F(149°C) Thickness Increase Weight Increase ASTM Fuel B 5h/70°F (21°C)	0 to 10% 10%	0 to 15% 15%	0 to 15% 15%	15 to30% 30%	0 to 15% 15%	0 to 15% 15%
Thickness Increase	0 to 10%	0 to 10%	0 to 10%	5 to20%	0 to 15%	0 to 10%
Weight Increase	12% Max	15% Max	10% Max	30% Max	15% Max	12% Max
Leachable Halides:	500 ppm max.	1000 ppm max.	1000 ppm max.	-	-	-
Leachable Chlorides:	200 ppm max.	400 ppm max.	100 ppm max.	-	-	-
Leakage: DIN 3535	0.05 cc/min	0.03 cc/min	0.03 cc/min	0.05 cc/min	0.05 cc/min	0.05 cc/min
Volume Resistivity, ASTM D257, 1/16"	5 x 10 ⁹ ohm-cm	3.1 x 10 ¹³ ohm-cm	4.2 x 10 ¹³ ohm-cm	4.2 x 10 ¹³ ohm-cm	4.2 x 10 ¹³ ohm-cm	-
Dielectric Breakdown, ASTM D149, 1/16"	0.04 kv/mm	14.6 kv/mm	11.7 kv/mm	11.7 kv/mm	11.7 kv/mm	11.0 kv/mm
Gasket Factors: Gb psi (MPa) a Gs psi (MPa)	1/16" 1/8" 512 (3.5) 1716 (11.8) 0.36 0.21 0.13 (0.0) 0.7(0.01)	1/16" 1/8" 2000 (13.8) – 0.194 – 340 (2.3) –	1/16" 1/8" 650 (4.5) 400 (2.8) 0.33 0.35 200 (1.4) 20 (0.14)		- - -	- - - -
ASTM F147, Flexibility	10x	8x	10x	8x	8x	10x
ASTM F104 Line Call-Out	F712120-B3E22M5	F712120-B4E22M5	F712120-B3E12M6	F712440-B3E24M5	F712330-B5E45M5	F712120-B3E22M5

Note: ASTM and DIN properties based on 1/16" sheet thickness, except ASTM F38 which is based on 1/32" sheet thickness. This is a general guide only and should not be the sole means of accepting or rejecting this material. The data listed here falls within the normal range of product properties, but should not be used to establish specification limits nor used alone as the basis of design.

Cross-Reference

In General GRI/DURLON® Gasketing Can Be Used In The Same Conditions and Services As The Following: 1

GRI/ DUR LON	Garlock	Thermoseal	Flexitallic
Durlon 7900/7950	2550, 2900, Blue-Gard [®] 3000	Klinger [®] sil C-4201, C-4324, C-4401,	SF1600, AF 2100, AF-2400
		4300	
Durlon 8300	HTC-9800, HTC-9850, G-9900, ST-706	Klinger [®] sil C-4500	SF 5000
Durlon 8400	Blue-Gard [®] 3700, IFG 5500	Klinger [®] sil C-7400	-
Durlon 8500	Blue-Gard [®] 3000, IFG [®] 5500	Klinger [®] sil C-4401, C-4430, & C-4433	SF 3300, SF 3500
Durlon 8600	Blue-Gard [®] 3200, 3400	Klinger [®] sil C-6400	SF 2420
Durlon 8700	Blue-Gard [®] 3300	Klinger [®] sil C-5400	SF 2440

¹ Refer to the manufacturer for PxT, chemical resistance and other compatibility information. Be sure application is within the service limits of each DURLON material.

Garlock, ST-706, HTC, Blue-Gard. IFG, are registered trademarks of Garlock, Inc. Thermoseal, Inc. A Klinger Licensee. Klinger and Klingerssil are registered trademarks of Richard Klinger, Inc.

Flexitallic is a registered trademark for gaskets of Flextiallic

Style	Composition	Description
		DURLON 9000/9000N is used extensively in chemical, pulp and paper, food and beverage, pharmaceutical and the railroad tankcar industries.
9000/9000N	Pure PTFE resins with inorganic fillers	It has been tested and approved for liquid chlorine, caustics, liquid oxygen, and high purity applications in the pharmaceutical industry (9000N, blood components manufacturing).
		The fillers in DURLON 9000/9000N are engineered shapes, homogeneously blended with pure PTFE resins that do not wick.
9200W	Pure PTFE resins with barium sulfate filler	Suitable for use in aggressive chemicals. Including caustics, hydrogen peroxide, sodium hypochlorite, nitric acid, liquors and digester in pulp and paper service. Applications In the chemical, pharmaceutical and plastics industries include butadiene, hydrofluoric acid, vinyl chloride, methyl methacrylates, and styrene. DURLON 9200W is also used extensively in railroad tankcar applications.
9400	Pure PTFE resins with carbon filler	Carbon filled PTFE is approved as a material of construction for anhydrous hydrogen fluoride (AHF). DURLON 9400 also demonstrates good electrical conducting properties.
9600	Expanded PTFE	DURLON 9600 is an EXPANDED PTFE gasket material made with only pure PTFE resins. It is suitable for use in steel flanges and flanges with irregular surfaces.

Independent testing has shown the fillers in the DURLON method to be more homogeneously blended than calendered, or layered filled PTFE gasket materials, giving DURLON filled PTFE's more consistent physical and mechanical properties without voids, separation and chemical compatibility problems found in the layered construction method.

Fabrication Services: DURLON Filled PTFE is available in LATHE CUT, STEP GASKETS and factory WELDED for diameters over 60".

The DURLON[®] RCA[™] Gasket featuring Identification Tabs and Alignment Guides

The DURLON[®] RCA[™] Gasket is a combination of DURLON[®] filled PTFE gasket materials and a **REDUCED CONTACT AREA** full face gasket configuration for standard and non-standard sealing applications requiring low gasket stresses. The DURLON[®] RCA[™] Gasket can replace standard full face gasket styles in FRP, PVC, thermoplastic lined pipe, lined vessel flanges and in similar non-metallic and metallic pipe flanges where a low stress gasket is required. It is designed for use in low torque sealing applications for piping and equipment in chemical, pulp and paper, food and beverage, pharmaceutical and other general industrial applications where resistance to highly aggressive chemicals, FDA, Oxygen service or Chlorine qualification is required.

The RCA[™] configuration reduces total gasket contact area resulting in a lower seating stress at a given torque level, while preventing flange rotation. The Identification Tabs make in-the-flange identification easy, the Alignment Guides ease installation and The RCA[™] configuration can be cut from DURLON[®] 9000, 9000N or 9200W sheet resulting in a cost savings vs. other low stress gaskets.

- Available in DURLON STYLES 9000, 9000N, or 9200W *
- Unique Alignment Guide and Identification Tabs configuration makes installation of larger gaskets in tight openings
 easier
- Identification Tabs make in the flange identification easy, no more costly media compatibility or gasket size mistakes
- For applications such as FRP, PVC, lined pipe flanges and vessels, glass lined flanges or similar low stress flanges where a PTFE gasket is preferred
- Lower sealing stress versus all standard full face gaskets and other reduced area gaskets
- pH range: 0 14
- Sizes available: 1 24" Class 150 and non-standard custom designs available upon request
- All Durlon® PTFE products conform to FDA , Durlon 9000 is Oxygen Service and Chlorine proven *

* Refer to Durlon[®] 9000/9000N and Durlon[®] 9200W in this section for specific information on each product.

Typical Physical Properties

DURLON [®] Style	9000/9	000N	9200W		94	00	9600	
Color:	9000 - Blue 9000N- White	e	Granite	e White	Black		White	
Fluid Services:	Steam, Oils, T Liquid Chlori Caustics, H2 Oxygen ² ,	TiO2, ClO2, ne ¹ , Acids, 2O2, Liquid Oleum	Steam, Nitrie CIO2, H2C Sulfur Diox Stock, Phos	c Acid, TiO2, 02, Liquors, kide, Brown sphoric Acid	Acids, Aqueous and Anhydrous Hydrogen Fluoride, Steam, Fuels, Oils, Alcohols Acids, Aqueous and Anhy Hydrogen Fluori Steam, Oils, Caus Acids, Alcohol		d Anhydrous n Fluoride, s, Caustics, Alcohols	
Filler System:	Inorga	anic	Barium	Sulfate	Car	Carbon —		-
Resin System:	Pure P	TFE	Pure	PTFE	Pure	PTFE	Pure Expa	nded PTFE
Temperature, Range: Continuous, max:	-350 to 9 (-212 to 2 500°F (2	520°F 271°C) 260°C)	-350 to (-212 to 500°F (9 520°F 9 271°C) (260°C)	-350 to (-212 to 500°F (550°F 288°C) 260°C)	-350 to 600°F (-212 to 316°C) 500°F (260°C)	
Pressure Max:	1500 psig ((103 bar)	1500 psig	(103 bar)	1500 psig	(103 bar)	1800 psig	(124 bar)
Density, g/cc (lbs/cu. ft):	2.2 (138)	2.5	(156)	2.1	(135)	0.8	(49.9)
ASTM F36, Compressibility	8-10	6%	8-	16%	5-1	12%	40	-60%
ASTM F36, Recovery	40	%	3	5%	4	0%	12%	
ASTM F38, Creep Relaxation	30	%	3	0%	30%		30%	
ASTM F152, Tensile Strength across grain, psi (MPa)	2,000 (13.8)		1920	(13.2)	2100 (14.5)			_
Fluid Resistance, pH Range (room temperature)	0 to	0 to 14 0 to 14 0 to 14		0	to 14			
Leakage: DIN 3535	0.01 cc	c/min	0.01 0	cc/min	0.01 cc/min		0.01	cc/min
Leakage: TA-Luft (VDI 2440) 1 bar (14.5 psig) @ 180°C (392°F)	7.55 x 10 ⁻⁶ m	nbar·l/(m·s)	1.89 x 10 ⁻⁵ mbar·l/(m·s) -			-		
Volume Resistivity, 1/16"	1.0 x 10 ⁵ (ASTM I	ohm-cm D257)			m-cm D991)	-	_	
Dielectric Breakdown, ASTM D149, 1/16"	16 kv/mm (4	406 V/mil)	_		1 kv/mm	(33 V/mil)	-	_
Gasket Factors Gb psi (MPa) a Gs psi (MPa)	1/16" 639 (4.4) 0.22 55 (0.38)	1/8" 495 (3.41) 0.262 65 (1.45)	1/16" 153 (1.05) 0.36 15 (0.1)	1/8" 96 (0.66) 0.437 14 (0.1)	1/16" 1701 (11.7) 0.173 99 (0.68)	1/8" 1412 (9.7) 0.164 248 (1.7)	1/16" 1200 (8.3) 0.2 3.5 (.024)	1/8" 1400 (9.65) 0.2 1.5 (0.01)
ASTM F104 Line Call-Out:	F4521 A9B5E1	111- 1K6M6	F452111- A9B5E11K6M5		F452111- F452111- A9B5E11K6M5 A9B5E11K6M6		F42811	1-A9B5
Notes:	 Pamphlet Chlorine Ir O2 Certifie Conforms 	95, The nstitute ed - BAM to FDA	1. O2 Certified - BAM C M 2. Conforms to FDA		Conform	is to FDA		

Note: ASTM and DIN properties based on 1/16" sheet thickness, except ASTM F38 which is based on 1/32" sheet thickness. This is a general guide only and should not be the sole means of accepting or rejecting this material. The data listed here falls within the normal range of product properties, but should not be used to establish specification limits nor used alone as the basis of design.

Cross-Reference

In General, GRI/DURLON® Gasketing Can Be Used In The Same Conditions and Services As The Following: 1

GRI/ DUR LON	Garlock	Flexitallic	Thermoseal
Durlon 9000/9000N	Gylon 3500, 3504 ² , 3510 ³	Sigma 500, 511 ² , 533 ³	TopChem 2000, 2003, 2005, 2006 ³
Durlon 9200W	Gylon 3510	Sigma 533	TopChem 2003
Durlon 9400	Gylon 3530	W.L. Gore	Intertech®
Durlon 9600	Gylon 3540, 3545	Gore-Tex [®] GR	SQ-S

¹ Refer to the manufacturer for PxT, chemical resistance and other compatibility information. Be sure application is within the service limits of each DURLON material. ² Check torque for non-metallic flanges. ³ Exception, hydrofluoric acid.

Flexitallic and Sigma are registered trademarks for gaskets of Flexitallic Intertex is a registered trademark of Intertech, Inc. Gore-Tex and GR are registered trademarks of W.L. Gore & Associates, Inc. Thermoseal, Inc. A Klinger Licensee. Klinger and TopChem are registered trademarks of Richard Klinger, Inc.

Corrugated Flexible Graphite

Style	Composition	Description
CFG	Flexible Graphite / Corrugated Stainless 316 Core	Designed for severe service conditions, the proprietary design of the corrugations gives CFG its superior sealing and recovery characteristics for tough conditions in the refining, chemical, petrochemical and pulp and paper industries. CFG is suitable for service in steam, oil, water, mild alkalis, hydrocarbons mild acids, and solvents.

DURLON CFG will maintain a tight seal in a wide range of initial seating stresses making it the universal replacement for spiral wound, double jacketed and traditional flexible graphite.

Sizes & Types:

- Standard ANSI Class 150 and 300 Ring and Full Face: 1/2" 24"
- Non Standard MSS SP-44 & API 605: 26" 96"
- Non Standard Ovals: Handhole and Manway Gaskets
- All Heat Exchanger Styles
- Different metals available to match flange metallurgy, temperature or chemical.

Advantages:

- Fire tested/fire resistant Passed the modified API 607 fire test
- Recovery/Spring Back characteristics for excellent sealing and thermal cycling.
- Blow Out Resistant Metal core counteracts internal pressure spikes.
- Superior Emissions Control DIN 3535 gas permeability/leakage<0.01 cc/min
- Easy to handle, easy to install.
- Seals tightly with lower bolt loads vs. spiral wounds.
 - One thickness 3/32" for all applications

Physical Properties:

Cross-Reference

Temperature, Min:	-328°F (-200°C)
Max, In Air:	850°F (454°C)
In Steam:	1200°F (650°C)
Pressure, Max:	3,000 psi (207 bar)
pH Range:	0-14

0-14

In General, GRI/**DUR**LON[®] Gasketing Can Be Used In The Same Conditions and Services As The Following: ¹

Gs

2.21 psi (0.02 MPa)

GRI/ DUR LON	Garlock	JM Clipper
CFG	Graphonic	ElastaGraph [™]

¹ Refer to the manufacturer for PxT, chemical resistance and other compatibility information. Be sure application is within the service limits of each DURLON material.

ElastaGraph[™] is a registered trademark of JM Clipper Corporation

Garlock, and Graph-Lock are registered trademarks of Garlock, Inc.

Flexible Graphite Sheet

Style	Composition	Description
FGS95	Homogeneous Flexible Graphite	Standard industrial grade sheet containing no binders or resins. Used in industrial applications such as oil refineries, power plants and chemical process plants.
FGL316	Laminated 0.002" Stainless 316 Foil Core/Flexible Graphite	Standard industrial grade sheet laminated with an adhesive bond on both sides of a .002" thick 316 stainless steel foil insert. Used where high performance and handleability is important.
FGT316	Laminated 0.004" Stainless 316 Tang Core/Flexible Graphite	Standard industrial grade sheet mechanically bonded on both sides of a .004" thick 316 stainless steel metal tang core. Used where stresses and pressures are high and improved handleability is important.

Typical Properties

95
1
1200
100
1200°F (650°C) Saturated Steam
-450 to 850°F (-260 to 454°C)
-450 to 5,432°F (-260 to 3,000°C)
3,000 psig (207 bar)
0 to 14 at room temperature (except strong oxidizers)

Test Method	Physical Properties	FGS95	FGL316	FGT316
ASTM F36	Compressibility, %	35-40	35-40	30-35
	Recovery, %	20	18	20
ASTM F38	Creep Relaxation, %	5	5	5
ASTM F495	Ignition Loss, %			
	@ 850°F (454°C)	1	1	1
	@1200°F (650°C)	8	6	6
DIN 3535 Part 4	Gas Permeability, cc/min.	0.40	0.40	0.80
ASTM	Specifications	F104:	F868:	F868:
ASTM	opecifications.	F517000B1M3	9FMF2	9FMF1

Note: ASTM and DIN properties based on 1/16" sheet thickness, except ASTM F38 which is based on 1/32" sheet thickness. This is a general guide only and should not be the sole means of accepting or rejecting this material. The data listed here falls within the normal range of product properties, but should not be used to establish specification limits nor used alone as the basis of design.

Cross-Reference

In General, GRI/DURLON[®] Gasketing Can Be Used In The Same Conditions and Services As The Following: ¹

GRI/ DUR LON	Garlock	Flexitallic	Thermoseal	Graphoil
FGS95	Graph-Lock 3123	Flexicarb LS	HL	GT™B
FGL316	Graph-Lock 3125SS	Flexicarb SR	SLS	GH™R
FGT316	Graph-Lock 3125TC	Flexicarb ST	PSM	GH™E

¹ Refer to the manufacturer for PxT, chemical resistance and other compatibility information. Be sure application is within the service limits of each DURLON material.

Flexicarb, LS, SR and ST are registered trademarks of Flexitallic L.P. Garlock, and Graph-Lock are registered trademarks of Garlock, Inc.

Thermoseal, Inc. A Klinger Licensee. Graphoil[®], GT™B, GH™R and GH™E are registered trademarks of Graftech, Inc.

Causes of Gasket Failure

- Uneven loading of flanges holding gasket in place
- Gasket load too low
- Bolt strength too low
- Torque loss
- Bolt Relaxation/Stretch (approximately 10% in first 24 hours)
- Gasket creep
- Vibration in the system
- Thermal cycling
- Water hammer
- Elastic interaction during bolt tightening
- IMPROPER GASKET INSTALLATION PRACTICES

Torque loss is inherent in any bolted joint. The combined effects of bolt relaxation, (approximately 10% during the first 24 hours after installation), gasket creep, vibration in the system, thermal expansion and elastic interaction during bolt tightening contribute to torque loss. When torque loss reaches an extreme, the internal pressure exceeds the compressive force holding the gasket in place and a leak or blow-out occurs.

A key to reducing these effects is proper gasket installation. By bringing the flanges together slowly and parallel when installing a new gasket and taking a minimum of four bolt tightening passes, following the correct bolt tightening sequence or pattern, there is a payoff in reduced maintenance costs and increased safety.

Even when the installation is ideal, where the bolt stress is uniformly applied to each bolt, and the gasket is properly compressed, problems can still arise. Inherently with time, loosening will occur due to the factors already mentioned. If other factors such as cycling, thermal upsets, or vibration are present, periodic retorquing might be necessary.

For problem areas, high temperature applications or where there is temperature cycling, or where a flange cannot be retorqued, conical spring washers have been found to be very helpful as an aid to torque retention. They act as a spring and help lessen the effects of torque loss.

Reducing Gasket Failures:

- PROPER GASKET INSTALLATION PRACTICES
- Lubricate bolts & nut facings
- Bring the flanges together slowly and parallel
 - 1. Multiple passes with increasing torque,
 - 2. Each pass following proper tightening sequence
- Use a 1/16" thick gasket through 10" flanges and 1/8" for 12" and above
 - 1. 1/16" has less gasket creep
 - Be sure there is adequate gasket stress.
- Periodic RETORQUING

•

- Use the right method of bolt up for the job
 - Order of efficiency from least to greatest:
 - 1. Wrench and cheater bar or sledge hammer
 - 2. Air impact gun
 - 3. Torque wrench
 - 4. Hydraulic torque wrench
 - 5. Hydraulic stud tensioners
- Use the installation procedure that follows, and RETORQUE!

Finally, having the torque information for the gasket material is helpful as well. Please refer to the torque data table that follows.

GASKET RESOURCES INC.

DURLON® GASKETING - BOLT TIGHTENING WORK SHEET

Location/Identification:	Nominal Bolt Size:	

Gasket Contact Surface Finish on Flange: _____; Lubricant Used: _____;

(Initial each step in space provided below.)

- 1. Visually examine and clean flanges, bolts, nuts and washers. Replace components if necessary.
- 2. Lubricate bolts, nuts, AND flange surface AROUND BOLT HOLES, or use hardened steel washers.
- 3. Install new gasket. DO NOT REUSE OLD GASKET, OR USE MULTIPLE GASKETS.
- 4. Number bolts in cross-pattern sequence according to the appropriate sketch below.
- 5. IMPORTANT! <u>HAND TIGHTEN; then PRE-TIGHTEN BOLTS</u> to <u>10/20 FT-LBS</u> torque, but DO NOT EXCEED 20% of Target Torque.
- <u>Check gap for uniformity</u>.
- 7. Use the appropriate cross-pattern tightening sequence in the sketch below for Rounds 1, 2, and 3 and/or Round 4 (each sequence constitutes a "Round").

Target Torque: ft-lbs	Torque Used												
LUBRICATE, HAND TIGHTEN, PRE-TIGHTEN bolts													
Round 1 - Tighten to 30% of target torque. Target Torque x	0.3 = ft-lbs												
Round 2 - Tighten to 60% of target torque. Target Torque x	0.6 = ft-lbs												
 Round 3 - Tighten to 100% of target torque. Target Torquex <u>Check gap around the circumference between each of these rounds</u>, m reasonably uniform around the circumference, make the appropriate ac proceeding. 	Round 3 - Tighten to 100% of target torque. Target Torque x 1 = ft-lbs Check gap around the circumference between each of these rounds, measured at every other bolt. If the gap is not reasonably uniform around the circumference, make the appropriate adjustments by selective bolt tightening before proceeding.												
Rotational Round - 100% of Final Torque (same as Round 3 or tightening sequence, starting with Bolt No. 1, for one complete ro rotation occurs at 100% of the Final Torque value for any nut.	^r 4 above). Use ROTATIONAL, clockwise ound and continue until no further nut												
Final Round - RETORQUE after four to twenty-four hours. A la preload loss occurs within twenty-four hours after initial tightenin hours. This Round recovers this loss. <u>This is especially IMPOR</u>	rge percentage of the short-term bolt ig with most occurring after four to five <u>RTANT for PTFE gaskets</u> .												
TIGHTENING METHOD USED:													
Hand Wrench Manual Torque Wrench Impact Wrench Other For guestions, or large diameter flange tightening pattern, contact GRI Technical Services	Hydraulic Torque Wrench												
Worksheet Information by:	Date:												
Joint Assembler:	Date:												

Bolt lubrication greatly affects the torque values used when installing gaskets. To achieve the same gasket compression, a much higher torque value is required for a dry bolt versus using an effective lubricant such as molybdenum disulfide.

In a dry bolt up, or where an inefficient lubricant is used, the effort used in tightening is overcome by the frictional forces between the bolts and nuts and to a greater extent between the nuts and nut facings.

This can result in a lower gasket load and inadequate stress on the bolts, which can result in torque loss and eventual leakage in service.

TORQUE VALUES – ASME B16.5 RAISED FACE FLANGES

ANSI B16.21 - RING GASKETS

1/16" & 1/8" DURLON® Gasket Material - Torque: ft-lbs

			Class	s 150 RF			Class 300 RF									
Flange	e Min. Torque @ Pressure, psig				Мах	# Bolts &	M	in. Torqu	sig	Мах	# Bolts &					
Size	100	150	200	285	Torque	Diameter	100	200	300	500	740	Torque	Diameter			
1/2"	5	6	7	8	16	4 @ 1/2"	5	7	8	9	11	16	4 @ 1/2"			
3/4"	8	9	10	11	23	4 @ 1/2"	10	12	14	17	20	38	4 @ 5/8"			
1"	10	12	13	15	30	4 @ 1/2"	13	16	18	22	26	36	4 @ 5/8"			
1-1/4"	16	18	20	22	46	4 @ 1/2"	20	25	28	35	41	55	4 @ 5/8"			
1-1/2"	21	24	26	30	56	4 @ 1/2"	31	39	45	55	65	92	4 @ 3/4"			
2"	42	48	53	60	113	4 @ 5/8"	21	27	30	37	44	62	8 @ 5/8"			
2-1/2"	49	56	62	70	113	4 @ 5/8"	30	37	43	53	63	87	8 @ 3/4"			
3"	72	82	90	113	130	4 @ 5/8"	43	54	63	77	92	126	8 @ 3/4"			
3-1/2"	40	46	51	58	113	8 @ 5/8"	48	61	71	88	104	141	8 @ 3/4"			
4"	51	58	64	73	113	8 @ 5/8"	61	77	90	111	132	179	8 @ 3/4"			
5"	76	87	96	111	202	8 @ 3/4"	76	96	114	142	170	202	8 @ 3/4"			
6"	96	110	122	142	202	8 @ 3/4"	64	81	97	121	145	187	12 @ 3/4"			
8"	130	150	169	200	236	8 @ 3/4"	101	132	157	198	240	297	12 @ 7/8"			
10"	124	145	165	193	327	12 @ 7/8"	106	141	169	216	264	310	16 @ 1"			
12"	164	195	220	259	327	12 @ 7/8"	158	213	255	327	400	464	16@1-1/8"			
14"	206	245	278	327	492	12 @ 1"	139	188	226	291	358	405	20@1-1/8"			
16"	197	234	266	313	492	16 @ 1"	197	266	321	413	508	570	20@1-1/4"			
18"	298	354	402	473	731	16@1-1/8"	221	298	359	461	566	644	24@1-1/4"			
20"	266	317	360	425	731	20@1-1/8"	246	333	403	520	642	710	24@1-1/4"			
24"	386	461	525	622	1036	20@1-1/4"	386	525	637	828	1027	1100	24@1-1/2"			

Note: It is assumed that new ASTM A193 Gr. B7 studs with 2H heavy hex nuts and hardened steel washers are used and studs, nuts and nut facings are <u>lubricated with a never-seize paste</u> using the installation and bolt tightening practices outlined above. Torque is based the higher of 40% of bolt yield, T3 or 4800 psi gasket stress up to either the maximum allowable material stress or a maximum bolt yield of 60%. The above was calculated using the proposed ASME Gasket Constants (ROTT Testing, Ecole Polytechnique) for each material.

* Based on 1/16" Durlon 8500. Minimum values for DURLON 8300, 9400 and 9600 may require higher loads. Minimum sealing requirements for other DURLON materials may be lower.

GRI/DURLON[®] - Chemical Resistance Chart

The following information is a general guide only for the selection of a suitable gasket material as there are unlimited combinations of fluid, pressure and temperature conditions

Acceptable А -

С -Caution - Depends on Conditions

NS -Not Suitable

	D	URLON	[®] COMF	PRESSE	D	DURLON®					DURLON [®] COMPRESSED				DURLON [®]					
			SHEET				PTFE				SHEET									
FLUID	8300	8400	8500	8600	8700	9000	9200W	9400	9600	FLUID	8300	8400	8500	8600	8700	9000	9200W	9400	9600	
Acetic Acid, Glacial (100%)	С	С	С	С	С	Α	Α	Α	Α	Detergent Solutions		Α	Α	Α	Α	Α	Α	Α	Α	
Acetic Acid, 37%	Α	Α	С	Α	Α	Α	Α	Α	Α	Diacetone Alcohol	NS	NS	NS	NS	NS	Α	Α	Α	Α	
Acetic Anhydride	Α	С	С	С	С	Α	Α	Α	Α	Dibenzyl Ether	NS	С	С	NS	NS	Α	Α	Α	Α	
Acetone	С	С	С	С	С	Α	Α	Α	Α	Dibutylamine	С	С	С	NS	С	Α	Α	Α	Α	
Acetylene	Α	Α	Α	С	Α	Α	Α	Α	Α	Diesel Fuel	Α	Α	Α	С	С	Α	Α	Α	Α	
Air	Α	Α	Α	Α	Α	Α	Α	Α	Α	Dimethyl Acetamide	NS	С	NS	NS	NS	Α	Α	Α	Α	
Alum	Α	Α	Α	Α	Α	Α	Α	Α	Α	Dimethylformamide	NS	С	NS	NS	NS	Α	Α	Α	Α	
Aluminum Acetate	Α	Α	Α	Α	Α	Α	Α	Α	Α	Dioxane	NS	NS	NS	NS	NS	Α	Α	Α	Α	
Amines	С	С	С	Α	С	Α	Α	Α	Α	Dowtherm A, E	NS	С	С	NS	NS	Α	Α	А	Α	
Ammonia, Gas <150°F	Α	Α	Α	NS	Α	Α	Α	Α	Α	Epichlorohydrin	NS	NS	NS	NS	NS	Α	Α	Α	Α	
Ammonia, Liquid<150°F	Α	Α	Α	С	Α	Α	Α	Α	Α	Ethane	Α	Α	Α	С	С	Α	Α	Α	Α	
Ammonium Bisulfite	Α	A	Α	С	Α	Α	A	Α	Α	Ethyl Acetate	С	С	С	С	NS	Α	A	Α	Α	
Ammonium Chloride	Α	A	Α	A	Α	Α	A	Α	Α	Ethyl Alcohol (Ethanol)	Α	Α	Α	A	Α	Α	A	Α	Α	
Ammonium Hydroxide	Α	Α	Α	Α	Α	Α	A	Α	Α	Ethylbenzene	NS	NS	NS	NS	NS	Α	A	Α	Α	
Amyl Chloride	Α	NS	NS	С	NS	Α	Α	Α	Α	Ethylchloride	Α	Α	Α	NS	NS	Α	A	Α	Α	
Aniline, Aniline Oil	NS	NS	NS	NS	NS	Α	Α	Α	Α	Ethylene	Α	Α	Α	NS	С	Α	A	Α	Α	
Arsenic Acid	Α	Α	Α	A	A	Α	Α	A	Α	Ethylene Dichloride	NS	NS	NS	NS	NS	Α	A	Α	Α	
Aviation Fuels	A	A	Α	С	C	Α	A	A	Α	Ethylene Glycol	A	A	A	A	A	Α	A	A	Α	
Barium Chloride	A	A	A	A	A	A	A	A	A	Ethyl Ether	C	C	C	NS	C	A	A	A	A	
Benzene (Benzol)	NS	NS	NS	NS	NS	A	A	A	A	Ethylene Oxide	NS	NS	NS	NS	NS	A	A	A	A	
Benzoic Acid	NS	NS	NS	NS	NS	A	A	A	A	Fatty Acids	A	A	A	NS	C	A	A	A	A	
Black Sulfate Liquor<350°	NS	A	A	C	C	A	A	A	A	Ferric Chloride	A	A	A	A	A	A	A	A	A	
Black Sulfate Liquor>350°F	NS	C	NS	NS	NS	A	A	A	A	Ferrous Chloride	A	A	A	A	A	A	A	A	A	
Bleach Solutions	C	A	C	C	C	A	A	A	A	Fluorine (Gas, Liquid)	NS	NS	NS	NS	NS	NS	NS	NS	NS	
Boiler Feed Water	A	A	A	A	A	A	A	A	A	Formaldehyde	A	C	A	C	C	A	A	A	A	
Borax	A	A	A	A	A	A	A	A	A	Formic Acid	NS	NS	NS	0	A	A	A	A	A	
Brine	A	A	A	A	A	A	A	A	A	Freen	•	•	•	See	Retrige	erants	•	•	•	
Butadiene	NS	NS	NS	NS	NS	A	A	A	A	Fuel OII	A	A	A	C	C	A	A	A	A	
Butane Butul Apototo	A	A	A	NS NC		A	A	A	A	Gas – Natural	A	A	A	NS NC	A	A	A	A	A	
Bulyi Acelale	NS 		NS ^	NS ^	NS A	A	A	A	A	Gasoline	A	A	A	NS A	NS A	A	A	A	A	
Butyl Alconol (Butanol)	A	A	A	A	A	A	A	A	A	Glucose	A	A	A	A	A	A	A	A	A	
Butyline (Butono)	NO A	113	NO A	NO	110	A	A	A	A	Giycerini (Giycerol)	A	A	A	A	A	A	A	A	A	
Butyrie Acid	A	A	A	110	C	A	A	A	A	Green Suilale Liquoi				NO	C	A	A	A	A	
Calcium Carbonate	A	A		~	^	A 	A	A	A 	Неузпе	A	A 	A 	NS	C	A 	A 	A 	A 	
Calcium Chloride	^	~	~		^	^	^	^	^	Hydraulic Oil (mineral)	^	^	~	0	C	^		^	^	
Calcium Hydroxide	Δ	Δ	Δ	Δ	Δ	Δ		Δ	Δ	Hydraulic Oil (nhos ester)	C C	<u>с</u>	C C	NS	NS	Δ	Δ	Δ		
Calcium Hypochlorite	C	Δ	C	C	C	Δ	Δ	Δ	Δ	Hydrazine	C	C	C	C	C	Δ	Δ	Δ	Δ	
Carbon Dioxide wet	A	A	A	C	C	A	A	A	A	Hydrochloric Acid 30%	NS	C	NS	NS	NS	A	A	A	A	
Carbon Disulfide	NS	C	NS	NS	NS	A	A	A	A	Hydrochloric Acid, Conc.	NS	C C	NS	NS	NS	A	A	A	A	
Carbon Tetrachloride	NS	с С	0	NS	NS	A	A	A	A	Hydrofluoric Acid <150°F	NS	NS	NS	NS	NS	NS	A	A	A	
Caustic Soda (NaOH)	NS	Ă	č	C	NS	A	A	A	A	Hydrofluoric Acid >150°F	NS	NS	NS	NS	NS	NS	NS	A	A	
Chlorine, liquid (drv) *	NS	NS	NS	NS	NS	A	A	A	A	Hvdrogen	A	A	A	A	A	A	A	A	A	
Chlorine (wet) *	NS	C	NS	NS	NS	A	A	A	A	Hydrogen Chloride. (drv)	A	NS	NS	NS	NS	A	A	A	A	
Chlorine Dioxide	NS	NS	NS	NS	NS	A	A	NS	A	Hydrogen Peroxide. 10%	C	C	C	C	C	A	A	A	A	
Chloroform	C	A	C	NS	NS	A	A	A	A	Hydrogen Sulfide (drv)	Ā	Ā	C	C	A	A	A	A	A	
Chromic Acid	NS	NS	NS	NS	NS	Α	Α	NS	Α	Hydrogen Sulfide. (wet)	С	С	С	NS	С	Α	Α	Α	Α	
Citric Acid	A	Α	A	Α	Α	Α	Α	A	Α	lodine	A	A	A	Α	NS	Α	Α	Α	Α	
Coal Gas	NS	NS	NS	Α	С	Α	Α	А	Α	Isooctane	Α	Α	Α	NS	С	Α	Α	Α	Α	
Copper Sulfate	Α	Α	A	Α	A	Α	Α	Α	Α	Isopropyl Alcohol	Α	Α	Α	Α	A	Α	Α	Α	Α	
Corn Oil	Α	С	С	NS	С	Α	Α	Α	Α	Jet Fuel	Α	Α	Α	NS	С	Α	Α	Α	Α	
Cotton Seed Oil	Α	Α	Α	NS	С	Α	Α	Α	Α	Kerosene	Α	Α	Α	NS	С	Α	Α	Α	Α	
Creosote (Coal Tar)	Α	Α	Α	NS	NS	Α	Α	Α	Α	Lactic Acid	Α	Α	Α	Α	Α	Α	Α	Α	Α	
Cresol	С	Α	С	NS	NS	Α	Α	Α	Α	Linseed Oil	Α	Α	Α	NS	С	Α	Α	Α	Α	
Crude Oil	Α	Α	Α	NS	С	Α	Α	Α	Α	Lubricating Oil	Α	Α	Α	NS	С	Α	Α	Α	Α	
Cumene	NS	NS	NS	NS	С	Α	Α	Α	Α	Magnesium Chloride	Α	Α	Α	Α	Α	Α	Α	Α	Α	
Cyclohexane	Α	Α	С	NS	С	Α	Α	А	Α	Maleic Acid	Α	Α	Α	С	NS	Α	Α	А	Α	

* Durlon 9000 is listed in Pamphlet 95 of the Chlorine Institute, as an acceptable gasket material for dry chlorine (liquid & gas) service. Gaskets for chlorine or oxygen service should be cleaned before installation.

GRI/DURLON[®] - Chemical Resistance Chart

	D	URLON	[®] COMF SHEET	PRESSE	D		DURI PT	_ON [®] FE			DURLON [®] COMPRESSED SHEET			D	DURLON [®] PTFE				
FLUID	8300	8400	8500	8600	8700	9000	9200W	9400	9600	FLUID	8300	8400	8500	8600	8700	9000	9200W	9400	9600
Mercury	Α	Α	Α	Α	Α	Α	Α	Α	Α	Refrigerant 402b	С	С	С	NS	Α	Α	Α	Α	Α
Methane	Α	Α	Α	NS	С	Α	Α	Α	Α	Refrigerant Blend 404a***	Α	Α	Α	NS	Α	Α	Α	Α	Α
Methyl Alcohol (Methanol)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Sea Water	Α	Α	Α	Α	А	Α	Α	А	Α
Methylene Chloride	NS	NS	NS	NS	NS	Α	Α	Α	Α	Silver Nitrate	С	Α	С	С	С	Α	Α	Α	Α
Methyl Ethyl Ketone	С	С	С	NS	С	Α	Α	Α	Α	Soap Solutions	Α	Α	Α	Α	Α	Α	Α	С	Α
Mineral Oil	Α	Α	Α	NS	С	Α	Α	Α	Α	Sodium Bisulfite	Α	Α	Α	Α	Α	Α	Α	Α	Α
Muriatic Acid	NS	С	NS	NS	NS	Α	Α	Α	Α	Sodium Carbonate	Α	Α	Α	Α	Α	Α	Α	Α	Α
Naphtha	Α	Α	Α	С	NS	Α	Α	Α	Α	Sodium Chloride	Α	Α	Α	Α	Α	Α	Α	Α	Α
Natural Gas	Α	Α	Α	NS	Α	Α	Α	Α	Α	Sodium Hydroxide	С	Α	С	С	NS	Α	Α	Α	Α
Nickel Sulfate	Α	Α	Α	Α	Α	Α	Α	Α	Α	Sodium Hypochlorite	NS	NS	NS	С	С	Α	Α	С	Α
Nitric Acid, <30%	NS	NS	NS	NS	NS	Α	Α	NS	Α	Sodium Nitrate	Α	Α	Α	С	С	Α	Α	Α	Α
Nitrogen	Α	Α	Α	Α	Α	Α	Α	Α	Α	Sodium Silicate	Α	Α	Α	Α	Α	Α	Α	Α	Α
Nitrogen Dioxide	NS	NS	NS	NS	NS	Α	Α	NS	Α	Sodium Sulfate	Α	Α	Α	Α	Α	Α	Α	Α	Α
Nitrogen Tetroxide	NS	NS	NS	NS	NS	Α	Α	NS	Α	Sour Crude Oil	Α	Α	Α	NS	С	Α	Α	Α	Α
Octane	Α	Α	Α	NS	С	Α	Α	Α	Α	Steam (to 450°F)	Α	Α	Α	Α	Α	Α	Α	Α	Α
Oil, Crude	Α	Α	Α	NS	С	Α	Α	Α	Α	Steam (over 450°F)	Α	Α	Α	С	С	NS	NS	NS	Α
Oil, Mineral	Α	Α	Α	NS	С	Α	Α	Α	Α	Stearic Acid	Α	Α	Α	С	Α	Α	Α	Α	Α
Oleum (H2SO4)	NS	NS	NS	NS	NS	Α	NS	NS	Α	Stoddard Solvent	Α	Α	Α	NS	С	Α	Α	Α	Α
Oxalic Acid	Α	Α	С	NS	С	Α	Α	Α	Α	Styrene	С	С	С	NS	NS	Α	Α	Α	Α
Oxygen, gas, liquid	NS	NS	NS	NS	NS	Α	Α	Α	Α	Sulfite Liquors	С	Α	С	С	С	Α	Α	Α	Α
Pentane	Α	Α	Α	NS	С	Α	Α	Α	Α	Sulfur (molten)	С	С	С	NS	С	Α	Α	Α	Α
Perchloroethylene	С	Α	С	NS	NS	Α	Α	Α	Α	Sulfur Dioxide	NS	С	NS	NS	NS	Α	Α	Α	Α
Petroleum	Α	Α	Α	NS	С	Α	Α	Α	Α	Sulfuric Acid, 20%	NS	NS	NS	NS	NS	Α	Α	Α	Α
Phenol	NS	NS	NS	NS	NS	Α	Α	Α	Α	Sulfuric Acid, Conc.	NS	NS	NS	NS	NS	Α	С	Α	Α
Phosphoric Acid, 45%	С	С	С	NS	С	Α	Α	А	Α	Sulfuric Acid, Conc>200°F	NS	NS	NS	NS	NS	Α	NS	NS	Α
Potassium Chloride	Α	Α	Α	Α	Α	Α	Α	Α	Α	Sulfuric Acid, Fuming	NS	NS	NS	NS	NS	Α	NS	NS	Α
Potassium Hydroxide	С	Α	Α	С	С	A A A A S			Α	SUVA				See F	Refrige	rants			
Potassium Nitrate	С	С	С	С	С	Α	Α	С	Α	Tar	Α	Α	Α	С	С	Α	Α	Α	Α
Propane	Α	Α	Α	NS	С	Α	Α	Α	Α	Tetrachloroethane	С	С	С	NS	NS	Α	Α	Α	Α
Propylene	NS	NS	NS	NS	NS	Α	Α	Α	Α	Tetrahydrofuran (THF)	NS	NS	NS	NS	NS	Α	Α	Α	Α
Pydrauls, Skydrols	С	С	С	NS	NS	Α	Α	Α	Α	Toluene	NS	NS	NS	NS	С	Α	Α	Α	Α
Pyridine	NS	NS	NS	NS	NS	Α	Α	Α	А	Transformer Oil	Α	Α	Α	NS	С	Α	Α	А	Α
Red Sulfite Liquor	NS	С	NS	NS	NS	Α	Α	Α	Α	Transmission Fluid	Α	Α	Α	NS	С	Α	Α	А	Α
Red Sulfite Liquor > 200°F	NS	NS	NS	NS	NS	Α	Α	Α	А	Trichloroethylene	С	С	С	NS	NS	Α	Α	А	Α
Red Sulfite Liquor > 380°F	NS	NS	NS	NS	NS	С	С	С	А	Triethanolamine	С	С	С	С	Α	Α	Α	А	Α
Refrigerant R-11 **	А	Α	Α	NS	NS	Α	Α	А	А	Turpentine	Α	Α	Α	NS	С	Α	Α	Α	Α
Refrigerant R-12 **	Α	Α	Α	С	Α	Α	Α	Α	А	Urea	Α	Α	Α	Α	Α	Α	Α	А	Α
Refrigerant R-22 **	С	С	С	С	Α	Α	Α	Α	А	Varsol	Α	Α	Α	NS	NS	Α	Α	А	Α
Refrigerant R-113 **	А	Α	Α	С	Α	Α	Α	Α	А	Vegetable Oil	Α	Α	Α	NS	С	Α	Α	А	Α
Refrigerant HCFC 123 **	NS	С	С	NS	С	Α	Α	А	Α	Vinegar	Α	Α	Α	С	А	Α	Α	Α	Α
Refrigerant HCFC 124 ***	NS	С	С	NS	Α	Α	Α	Α	А	Vinyl Acetate	С	С	С	NS	С	Α	Α	А	Α
Refrigerant HFC 125 ***	С	С	С	NS	Α	Α	Α	Α	Α	Vinyl Chloride	NS	NS	NS	NS	NS	Α	Α	Α	Α
Refrigerant HFC 134a ***	А	Α	Α	С	Α	Α	Α	Α	Α	Water	Α	Α	Α	Α	Α	Α	Α	А	Α
Refrigerant HCFC 141b	А	Α	Α	NS	А	Α	Α	Α	Α	White Sulfate Liquor	Α	А	Α	Α	Α	Α	Α	А	Α
Refrigerant HFC 236fa	А	А	Α	NS	А	Α	Α	А	А	White Spirit	Α	А	А	С	С	Α	A	А	Α
Refrigerant Blend H 62***	А	Α	Α	NS	Α	Α	Α	Α	А	Xylene	NS	NS	NS	NS	NS	Α	A	А	Α
Refrigerant Blend HP80	С	С	С	NS	Α	Α	Α	А	Α	Zinc Chloride	Α	Α	Α	Α	Α	Α	Α	Α	Α
Refrigerant 402a	С	С	С	NS	А	Α	Α	Α	Α	Zinc Nitrate	С	С	С	С	С	Α	Α	С	Α
Refrigerant Blend HP81	С	С	С	NS	Α	Α	Α	А	Α	Zinc Sulfate	Α	Α	Α	Α	Α	Α	Α	Α	Α
** With Mineral Oil.	***	With	Polvol	Ester	Oil											-			

Gaskets for chlorine or oxygen service should be cleaned before installation.

This information is a general guide for the selection of a suitable gasket material. The substances listed above are evaluated for their effect on the gasket materials at ambient temperature (-40°F to 100°F, or -40°C to 38°C) unless stated otherwise. For unusual conditions of fluid concentrates, internal pressures or temperature consult your representative. This evaluation is based on laboratory or field tests, or experience; however, no guarantee can be given as to the actual performance experienced by the end user.

There are several fluids used in food which can be sealed by SBR, however due to flavor pickup, we have used "C" caution on these products.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Please go to our website for additional chemical listings and recommendations on CFG, and flexible graphite.

www.gasketresources.com

Page 11

 Pulp & Paper

 Utilities/Power Plant

 Digesters

 Chemical Recovery

 Blow Tanks

 Pump Discharge

 Washing

 Bleaching

 Refiners

 Wet End

 Head Box

 Dryers

 Coating Piping/Storage

 General Service

Chemical Processing Process Piping a.Acids b.Alkalies c.Chlorine d.Stainless Steel e.General & Utility Service Chemical Pumps Centrifuges Heat Exchangers Towers and Reactors Tower Trays Storage Tanks Manways General Service

Rail-Tank Car

Multi Housing Arrangements Nozzle and Outlet Arrangements Cover Flanges Liquid Connections Air Connections Gauging Devices Manway Covers Safety Valves Bottom Outlet Valves Steam Pipes

Power Generation Boiler Ash Handling Chemical Piping Steam Turbine and Generator Circulating Water Condensate Diesel Backup Screen House Pumps and Piping General Service

FDA & Pharmaceutical

Agitators Dryers Mixers Pumps Autoclaves Cookers Filter Screens Stainless Piping Storage Tanks Blenders Cooling Vessels Homogenizer Loading/Unloading Systems

GASKET RESOURCES INC.

Our Company

We are market-driven and technology-based, serving customers throughout the *world* with innovative fluid sealing products.

Our People

GRI regards people as its most important resource. We foster leadership, individual accountability, and teamwork. Our employees are professionals whose entrepreneurial behavior is result-oriented and guided by personal integrity. In return, our employees can count on opportunities for individual and professional development in an empowering working environment.

Our Sealing Products

Durlon[®] sealing products have the widest possible range of service applications, therefore, the number of different types of gaskets required to be inventoried can be greatly reduced. This impacts process safety because limiting the number of gasket styles reduces the chance of installing the wrong gasket in the wrong service.

For these reasons, more and more original equipment manufacturers and industrial consumers are specifying Durlon[®] gasket materials for their needs.

Durlon[®] products are used in virtually every industrialized corner of the world. Our gasket materials are manufactured to ISO 9001 quality standards and are subjected to continuous testing and rigid quality control. And, our cutting and fabrication facility is ISO 9002 certified. This ensures unvarying performance on the job.

Our state-of-the-art research and development facility is geared to meet the ever-changing demands required in today's variety of service conditions Since their inception, DURLON[®] gasket materials have undergone many enhancements, each incorporating the latest technology to better meet the wide variety of industry's changing needs.

Gasket Resources Inc. recognizes that today more emphasis is being placed on fugitive emissions via the Clean Air Act in the U.S., and various regulations in other countries. Therefore one of our prime design objectives is to maximize the sealability of our gasket materials to meet fugitive emissions requirements.

INNOVATIVE DURLON® FABRICATION ADVANTAGES

Welded Durlon

Our innovative welding process enables GRI to manufacture large diameter gaskets with single piece construction.

- All of our 9000 series Filled PTFE products can be welded
- Gasket OD sizes 60" and above
- Cost Effective Alternative to Conventional Die Cutting
- Retains the same physical properties as a die cut gasket
- · Conforms to FDA regulations

Lathe Cut Durlon

All Filled PTFE Durlon[®] products can be provided lathe cut

- Cost Effective alternative to conventional die cutting
- Eliminates Costly Center Waste
- Cost Effective Large Diameter Gaskets
- · Small cross sectional parts that cannot be die cut

Gasket Cutting Division

While GRI's distributors all have cutting capabilities, Gasket Resources compliments our distributors with a modern, ISO 9002 certified, cutting facility and world class workmanship that can only come from experience. GRI is proud of our dedicated workforce that averages over 20 years of fabrication experience.

Our fabrication plant, located at our headquarters in Exton, PA, includes equipment not found at the most progressive fabrication facilities. These amenities include PTFE welding for large diameter gaskets over 60", Durlon[®] PTFE lathe cutting, computerized high speed die cutting equipment, all steel interchangeable ID/OD tooling for close tolerance ring gaskets and many more proprietary and innovative production related customer service assets.

If your Durlon[®] gasketing product is fabricated by Gasket Resources or our factory trained and dedicated distribution partners you are assured that you are receiving the very best value in the fluid sealing industry.

P.O. Box 565, Exton, PA 19341-0565 T: 610.363.5800 · 866.707.7300 F: 610.363.5881 www.gasketresources.com Distributed by:

Г